Validating a Problem-Based Learning Process Assessment Tool in a Nepalese Medical School

Upadhyay, S.K.¹, Bhandary, S.¹, Ghimire, S.R.², Maharjan, B.R.³, Shrestha, I.⁴, Joshi, M.⁵, Vaidhya, S.⁶

Abstract

Introduction: The newly established Patan Academy of Health Sciences (PAHS) has incorporated measurement of non-cognitive skills and behaviours into the summative assessment in the setting of problem based learning (PBL). This study aims to validate a PBL process assessment tool for PAHS.

Methods: A list of 72 items of student behaviours observable in PBL tutorials was compiled from literature review. They were categorized under ten broad dimensions consistent with predefined PAHS Graduate Attributes. A series of PBL project committee meetings and expert inputs refined the list of 72 items to 47 and categorized them under eight dimensions. These 47 items, each with a 4-point rating scale, formed the Tutor Assessment of Student Tool (TAS-Tool). Twenty-four trained faculty members used the TAS-Tool to evaluate the performance of 41 senior high school students in PBL tutorials.

Results: The internal-consistency of the TAS-Tool was very high (Cronbach’s α = 0.954). Removal of two inconsistent items further increased it to 0.975. Principal components analysis with varimax rotation applied to the remaining 45 items gave seven components and explained 69.47% of the variation between the components. These seven components (% variation) were: Immersed in the Tutorial Process (20.16%); Professional (12.71%); Communicator and Team Leader (11.25%); Critical Thinker (8.77%); Reflector (6.22%); Creative (5.95%), and Sensitive (4.41%).

Conclusion: TAS-Tool was found to be a reliable and valid instrument and applicable in formative PBL process assessment at PAHS starting with the pioneer cohort of medical students. Further validation of TAS-Tool through longitudinal study with PAHS students is required for summative purpose.

Key words: Problem Based Learning, Summative Assessment, Tool Validation, Factor Analysis, Nepal

Introduction

Patan Academy of Health Sciences (PAHS), a newly established health science university in Nepal, has adopted problem-based learning (PBL) as the principal pedagogic strategy for fostering important generic skills (non-cognitive behaviours).

1Department of Community Medicine
2Department of Anatomy
3Department of Biochemistry
4Department of Physiology
5Department of Pharmacology
6Department of Pathology

School of Medicine, Patan Academy of Health Sciences, Nepal.

Corresponding Author:
Dr. Shambu Kumar Upadhyay, Associate Professor, Department of Community Health Sciences, School of Medicine, Patan Academy of Health Sciences (PAHS), Lagankhel, Lalitpur, G.P.O. Box: 26500, Kathmandu, Nepal
Email: shambhu.upadhyay@pahs.edu.np

These include self-directed learning, good communication, team leadership, and critical and reflective thinking (Wood, 2003; Schmidt et al., 2006; Tiwari et al., 2006; Koh et al., 2008). These generic skills are consistent with the predefined PAHS Graduate Attributes (Morgan, 2009). PAHS decided to incorporate their measurement into formative assessment but, most importantly, into summative assessment too in the setting of PBL (Upadhyay et al., 2011).

PBL implementation varies with the setting (Maudsley, 1999; Leung & Wang, 2008) and PBL process assessment is largely confined only to formative purposes (Eva, 2001; Elizondo-Montemayor, 2004). Since no locally validated PBL assessment tool was available, the need for such a tool became evident for PAHS before enrolling the pioneer cohort of medical students in June 2010.
The primary aim of this study was to develop and validate a PBL process assessment tool for evaluating non-cognitive skills and behaviours of medical students in PBL settings at PAHS.

Methods

A PBL project committee was formed and comprised of the authors who had previous experience with PBL in other medical school (Dixit & Sharma, 2003) in Nepal. The committee conducted extensive literature review and obtained a preliminary list of 72 items of student behaviours considered observable in PBL tutorial sessions (Hebert & Bravo, 1996; Des Marchais & Vu, 1996; Das, 1998; Valle et al., 1999; Ladouceur et al., 2004; Elizondo-Montemayor, 2004; Tan & Tan, 2006; Papinczak et al., 2007; Leung & Wang, 2008). The items were categorized into ten broad dimensions, namely: Preparation, Participation, Self-Directed Learning, Critical Thinking, Professionalism, Communication Skills, Group Skills, and Respect for Colleagues, Scientific Communication, and Reflectiveness. These dimensions were in line with the predefined PAHS Graduate Attributes (Morgan, 2009).

A series of the PBL project committee meetings refined the list of 72 items to 47 categorized under eight dimensions through consensus of the group. After input from one internal and two external experts, the list was finalized. These 47 items formed the Tutor Assessment of Student Tool (TAS-Tool). The individual items were evaluated using a 4-point rating scale distributed as 'Unacceptable (0)', 'Needs improvement (1)', 'Good (2)', and 'Excellent (3)'. An overall subjective rating scale distributed as 'Below expectation (0)', 'Borderline (1)', and 'Meets expectation (2)' was added on TAS-Tool.

The subjective rating scale was incorporated to calculate the pass-mark using a criterion-referenced “borderline” method along with space for open-ended comments from tutors for further research purpose. PBL tutorial sessions with higher secondary school students pursuing science courses were conducted in April 2010 to assess the relevance and usefulness of the TAS-Tool using a PBL case written for real-time use for incoming pioneer cohort of PAHS medical students. These school students were eligible applicants for undergraduate medical education in Nepal according to the Nepal Medical Council (2010).

Three PBL tutorial sessions, each of two hours duration, were conducted using a PBL case that progressively unfolded over a week with a day in between two tutorials for self-directed learning by the students. These sessions were conducted in six groups each comprising four faculty members and 7-8 students. A total of 24 faculty members trained a priori in PBL facilitation process and 45 volunteer students participated in all three tutorial sessions and a one-hour wrap-up session. A one-day orientation program on PBL, its process, and assessment was organized separately for students as well as faculty with emphasis on evaluation of TAS-Tool a week before conducting PBL tutorial sessions. Faculty tutors were briefed on and provided with the PBL case and a tutor-guide for further reading and preparation.

Of the four faculty members in each PBL group, one faculty member in each group facilitated all three tutorial sessions while the other three faculty members silently observed the process but all four evaluated the students on completion of all three sessions (i.e. at the end of 3rd session) using the TAS-Tool. A reflection meeting was held separately for faculty and students to share their insights/experiences about the overall PBL process, which was attended by the PAHS authorities including the founding Dean of School of Medicine.

TAS-Tool data were entered in Microsoft Excel 2007 spreadsheet and analyzed using the SPSS for Windows Version 15.0. Internal-consistency reliability of the TAS-Tool was assessed using Cronbach’s alpha whereas its internal-construct structure was assessed through Principal Component Analysis (PCA) with varimax rotation to validate it at the local level. Applicability of the PCA was assessed using Kaiser-Meyer-Olkin (KMO) and Barlett’s Sphericity Tests. Factor loading of 0.4 was used as the cut-off to determine the emerging dimensions on exploratory factor analysis.

Written consent was taken from the students and verbal consent was taken from faculty for their participation in the PBL tutorial sessions in this study.

Results

Using the TAS-Tool, a group of twenty four faculty members comprising of nine each from basic and clinical sciences, four from general science and two from community health science evaluated 41 out of 45 students, who participated in all three tutorials as well as the case wrap-up session. Of these 41 students, 21 were females and 20 males with the mean (SD) age 18.44 (1.25) years and age range 16-20 years.
Data analysis revealed the internal consistency (Cronbach's alpha) of the 47-item questionnaire. Although the TAS-Tool was planned to be validated using at least 188 samples (47 items x 4-point rating scale = 188 samples), only 162 samples could be administered due to the drop out of four students in the last tutorial session. Again, due to missing data in one or more items, the tool was validated with only 155 completed samples out of 162 administered. According to Guadagnoli & Velicer (1988, cited in Hebert & Bravo, 1996), this number is considered more than the minimum sample size of 100 required to ensure the relative stability of component pattern in a factorial analysis.

Nonetheless, Kaiser-Meyer-Olkin (KMO) test measuring the sampling adequacy was found as 0.938, which is above the recommended value of 0.900 for conducting exploratory factor analysis. Similarly, Barlett’s Test for Sphericity also showed the applicability of exploratory factor analysis as it was also found to be highly significant ($\chi^2 = 5798, p<0.001$). Both these tests indicate that PCA was suitable in terms of sample size and assumption of Sphericity for the data obtained by administering the TAS-Tool. Application of the PCA with varimax rotation revealed seven components (dimensions) from the sample (N=155) explaining 69.47% of variance (σ^2) among the 45-items as shown in Table1 (page 22-23).

Based on the significant item-wise factor loadings in each component (i.e. 0.4 and above), the PBL project committee members were asked to come up with plausible names for these dimensions. The committee decided in consensus to name the 7 dimensions as: Immersed in Tutorial Process (Factor/Component 1), Professional (Factor/Component 2), Communicator and Team Leader (Factor/Component 3), Critical Thinker (Factor/Component 4), Reflector (Factor/Component 5), Creative (Factor/Component 6) and Sensitive (Factor/Component 7) explaining 20.16% (15 items), 12.71% (10 items), 11.25% (10 items), 8.77% (4 items), 6.22% (3 items), 5.95% (2 items) and 4.41% (1 item) of variance respectively.

Discussion

Adoption of PBL strategy should closely align with the assessment measures that reflect the learning process and outcomes so as to foster desired attributes in learners as well as achieve the intended educational goals. Although plenty of literature describe the assessment of process and outcomes of PBL, there is paucity of standardized/validated tools (Hebert & Bravo, 1996; Valle et al., 1999; Leung & Wang, 2008; Marcangelo et al., 2009). One reason for this may be, as mentioned by (Major and Palmer, 2001) and Leung and Wang (2008) that each particular PBL environment is unique and, hence, often requires a PBL assessment strategy adapted to the specific setting and intended program objectives. The development and validation of the TAS-Tool was driven by such a need of monitoring and evaluating the progress made by students in non-cognitive domain (independent of cognitive domain) in PBL at PAHS.

The internal consistency reliability of the 47 items TAS-Tool was found to be very high (Cronbach's alpha = 0.954). However, two items namely 'shows meaningful participation relevant to case discussion' and 'arrives in time and attends tutorial regularly' were found to be inconsistent i.e. negatively correlated and uniformly scored respectively. The negative correlation for the item- ‘meaningful participation in the PBL tutorial process’- might have arisen due to students not giving high importance to it as it was not academically valuable to them. It could have also arisen due to tutor's variability to judge this item. Uniform scoring on item- 'arrives on time and attends tutorial regularly' (punctuality) might have been due to less strict scoring of the voluntary participation of the students by faculty tutors to allow for maximum student participation in the process. This led to the removal of these two items, which further increased the internal consistency reliability (Cronbach's alpha to 0.975) of TAS-Tool.

The internal construct structure i.e. construct validity of TAS-Tool was tested by PCA with varimax rotation. The seven dimensions obtained from PCA and identified as Immersed in Tutorial Process, Professional, Communicator and Team Leader, Critical Thinker, Reflector, Creative, and Sensitive were found closer to the previously agreed eight dimensions. This shows that TAS-Tool is able to capture more than $2/3^{rd}$ of the variability in the formative PBL process assessment in the local context of PAHS and is suitable for further study based on longitudinal data obtained from its application for summative purpose.

Tutor's assessment of students has been reported as being highly supportive of the learning process as well as good assessment practice in PBL settings (Rothman & Page, 2002).
<table>
<thead>
<tr>
<th>Items on students’ skills and behaviors in PBL</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
<th>Component 4</th>
<th>Component 5</th>
<th>Component 6</th>
<th>Component 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uses variety of authentic information resources to obtain needed information</td>
<td>0.812</td>
<td>0.113</td>
<td>0.139</td>
<td>0.043</td>
<td>0.163</td>
<td>0.101</td>
<td>0.076</td>
</tr>
<tr>
<td>Brings new information relevant to discussion</td>
<td>0.800</td>
<td>0.018</td>
<td>0.271</td>
<td>0.075</td>
<td>0.088</td>
<td>0.061</td>
<td>0.176</td>
</tr>
<tr>
<td>Integrates knowledge and information derived from multiple sources in a meaningful way</td>
<td>0.742</td>
<td>0.172</td>
<td>0.293</td>
<td>0.287</td>
<td>-0.002</td>
<td>0.044</td>
<td>0.170</td>
</tr>
<tr>
<td>Completes all assigned tasks to the level appropriate for the task</td>
<td>0.723</td>
<td>0.178</td>
<td>0.092</td>
<td>0.222</td>
<td>0.118</td>
<td>0.280</td>
<td>-0.141</td>
</tr>
<tr>
<td>Makes clear, concise and coherent summary</td>
<td>0.699</td>
<td>0.024</td>
<td>0.218</td>
<td>0.304</td>
<td>-0.018</td>
<td>0.053</td>
<td>0.238</td>
</tr>
<tr>
<td>Shows evidence of reading diverse and recent sources about the case</td>
<td>0.699</td>
<td>0.091</td>
<td>0.097</td>
<td>0.168</td>
<td>0.245</td>
<td>0.364</td>
<td>-0.161</td>
</tr>
<tr>
<td>Actively makes effort to enhance his/her own level of understanding and competence</td>
<td>0.695</td>
<td>0.140</td>
<td>0.188</td>
<td>0.201</td>
<td>0.218</td>
<td>0.220</td>
<td>-0.051</td>
</tr>
<tr>
<td>Presents information relevant to the case clearly and concisely</td>
<td>0.680</td>
<td>0.142</td>
<td>0.305</td>
<td>0.294</td>
<td>0.005</td>
<td>0.120</td>
<td>0.118</td>
</tr>
<tr>
<td>Respect others' cultural and religious beliefs</td>
<td>0.005</td>
<td>0.824</td>
<td>0.008</td>
<td>0.006</td>
<td>-0.076</td>
<td>0.100</td>
<td>0.203</td>
</tr>
<tr>
<td>Shows respect and sensitivity to others</td>
<td>0.177</td>
<td>0.711</td>
<td>0.197</td>
<td>0.203</td>
<td>0.109</td>
<td>0.039</td>
<td>-0.009</td>
</tr>
<tr>
<td>Allows others to express their views and respects their knowledge/perspectives</td>
<td>0.024</td>
<td>0.682</td>
<td>0.264</td>
<td>0.096</td>
<td>0.247</td>
<td>0.055</td>
<td>0.017</td>
</tr>
<tr>
<td>Accepts constructive criticism and feedback with openness in a non-defensive manner</td>
<td>0.201</td>
<td>0.671</td>
<td>0.123</td>
<td>0.035</td>
<td>0.249</td>
<td>0.109</td>
<td>0.369</td>
</tr>
<tr>
<td>Conducts him/herself in an honest manner</td>
<td>0.257</td>
<td>0.603</td>
<td>0.266</td>
<td>0.218</td>
<td>0.251</td>
<td>-0.125</td>
<td>0.123</td>
</tr>
<tr>
<td>Learn from feedback and criticism by accepting responsibility for improving behaviors</td>
<td>0.044</td>
<td>0.600</td>
<td>0.184</td>
<td>0.284</td>
<td>0.319</td>
<td>0.139</td>
<td>-0.041</td>
</tr>
<tr>
<td>Takes stance for his/her point/view but agrees to change if evidences shows otherwise</td>
<td>0.323</td>
<td>0.514</td>
<td>0.199</td>
<td>0.223</td>
<td>0.290</td>
<td>0.201</td>
<td>0.150</td>
</tr>
<tr>
<td>Provides constructive criticism and feedback (reflection, ideas and suggestion)</td>
<td>0.264</td>
<td>0.489</td>
<td>0.232</td>
<td>0.093</td>
<td>0.226</td>
<td>0.125</td>
<td>0.434</td>
</tr>
<tr>
<td>Speaks clearly and respectfully</td>
<td>0.189</td>
<td>0.456</td>
<td>0.293</td>
<td>0.260</td>
<td>0.291</td>
<td>0.104</td>
<td>0.412</td>
</tr>
<tr>
<td>Participates actively in group evaluation (self, peer, group and tutor)</td>
<td>0.175</td>
<td>0.407</td>
<td>0.243</td>
<td>0.205</td>
<td>0.187</td>
<td>0.331</td>
<td>-0.111</td>
</tr>
</tbody>
</table>

Table 1: Principal Component Analysis with Varimax Rotation on TAS-Tool
Factor 3
Encourages participation of others in group discussion | 0.158 | 0.420 | 0.673 | 0.050 | 0.113 | 0.116 | 0.063
Helps to resolve misunderstanding and conflicts | 0.258 | 0.324 | 0.618 | 0.339 | 0.006 | 0.165 | 0.122
Helps peers to clarify ideas | 0.409 | 0.130 | 0.613 | 0.283 | 0.303 | 0.181 | 0.016
Takes the lead or intervenes appropriately to foster group process and learning | 0.403 | 0.174 | 0.575 | 0.231 | 0.213 | 0.339 | 0.056
Actively contributes towards achieving group’s learning goals | 0.436 | 0.243 | 0.565 | 0.344 | 0.093 | 0.263 | 0.041
Supports and/or counters statement with reasoning and evidences | 0.365 | 0.218 | 0.554 | 0.396 | 0.210 | 0.137 | 0.006
Makes comments that promotes better understandings of the subject by the group | 0.426 | 0.203 | 0.531 | 0.250 | 0.304 | 0.189 | 0.075
Asks appropriate questions to clarify obscure points, enhance understanding, or stimulate discussion | 0.475 | 0.204 | 0.483 | 0.124 | 0.016 | -0.242 | 0.311
Seeks consensus | 0.279 | 0.325 | 0.468 | 0.076 | 0.277 | 0.302 | 0.199
Listens actively as indicated by contribution to discussions, seeking clarification from others and summarizing discussions | 0.314 | 0.320 | 0.402 | 0.254 | 0.219 | 0.167 | 0.371

Factor 4
Approaches the problem in a systematic and logical manner | 0.417 | 0.230 | 0.211 | 0.698 | -0.042 | 0.110 | 0.082
Discriminates important information from non-important ones | 0.323 | 0.286 | 0.229 | 0.690 | 0.032 | 0.202 | 0.119
Demonstrates ability to interpret the information given in the problem in a logical manner | 0.433 | 0.183 | 0.179 | 0.686 | 0.209 | 0.043 | 0.100
Shows ability to generate explanatory hypotheses | 0.330 | 0.071 | 0.350 | 0.538 | 0.282 | 0.101 | 0.265

Factor 5
Identifies areas in need of improvement | 0.175 | 0.316 | 0.170 | 0.014 | 0.763 | 0.102 | 0.219
Recognizes limits of own knowledge and ability | 0.034 | 0.397 | 0.124 | 0.129 | 0.758 | 0.043 | 0.134
Takes positive step towards improving his/her weaknesses | 0.284 | 0.483 | 0.182 | 0.155 | 0.490 | 0.043 | -0.147

Factor 6
Uses diagrams, flow charts, tables etc. to facilitate communication | 0.379 | 0.099 | 0.292 | 0.178 | 0.131 | 0.703 | 0.183
Draws diagrams, flow charts, and tables to explain and summarize concepts | 0.479 | 0.123 | 0.256 | 0.146 | 0.005 | 0.683 | 0.157

Factor 7
Responds to a nonverbal and emotional messages | 0.117 | 0.294 | 0.056 | 0.414 | 0.185 | 0.191 | 0.571

Variance Explained

Number of Items
15 | 10 | 10 | 4 | 3 | 2 | 1
TAS-Tool is, thus, believed to enable tutors to make comprehensive evaluation of students’ progress in non-cognitive domains: both formative and summative. The formative measure is expected to help students get relevant feedback and encourage them in adopting desired cognitive as well as non-cognitive behaviours. However, the value of summative measure has been debated in the literatures citing the dual roles of the tutor as mentors and judge being incompatible (Blake et al., 1995). Most PBL schools have limited its use for formative purpose only (Nendaz & Tekian, 1999; Rothman & Page, 2002). Despite contradictory arguments, tutor ratings in PBL have been acknowledged to have positive contribution towards the composite assessment of students if reliability and validity of tools are acceptable when used summatively (Rothman & Page, 2002).

Drop out of 4 students in the last tutorial sessions and missing data on one or more items on filled samples led to the reduction in the number of intended sample. This may be due to lack of interest and uniform adaptability to the small-group-learning environment of all students. During the reflection sessions held at the end of tutorials, students expressed that they found the PBL process very participatory and interactive whereas faculty felt they had received important hands-on experiences and gained enhanced confidence in facilitating and assessing PBL tutorials albeit tedious data completion task.

Tutor reluctance in rating the long list of items is likely to be the main limitation of the TAS-Tool as reported by other studies (Hebert & Bravo, 1996; Eva, 2001; Ladouceur et al., 2004; Leung & Wang, 2008) too. To address this, more work is necessary to improve the TAS-Tool with fewer and smarter items without losing its reliability and validity. Moreover, voluntary participation of students may have obscured the reflection of students’ learning behaviours accurately. Hence, the generalizability of TAS-Tool in other PBL settings needs careful consideration and its further validation through a longitudinal study on PAHS medical students and with larger sample size is required.

Conclusion

Since the internal consistency reliability along with face, content and construct validity of the TAS-Tool were found to be highly acceptable, this tool is applicable in PBL settings. Therefore, TAS-Tool could add significant value to the PAHS Student Assessment System in assessing non-cognitive skills and behaviours of its students longitudinally and, thereby, foster the development of those attributes as aspired by PAHS in its graduates. Thus, it was recommended that TAS-Tool be used in PBL tutorial assessment at PAHS starting with its pioneer cohort of medical students as formative measure and to further validate it through longitudinal study before adopting it as summative measure. Most importantly, TAS-Tool may provide added value as reference to other medical schools implementing PBL in Nepal and elsewhere.

Acknowledgement

The authors would like to thank the students and teachers of Adarsha Vidhya Mandir Higher Secondary School, Lalitpur, Nepal for their cooperation and participation in the study; the founding vice chancellor of PAHS, Dr. Arjun Karki and Medical Education Unit of PAHS for their continued guidance; PAHS faculty and administration; PAHS International Advisory Board members as well as GSMC FAIMER Regional Institute faculty, fellows (2009) and staffs in Mumbai, India for their support.

References

